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Abstract

Many sequential decision making problems are high-stakes and require off-policy
evaluation (OPE) of a new policy using historical data collected using some other
policy. One of the most common OPE techniques that provides unbiased estimates
is trajectory based importance sampling (IS). However, due to the high variance
of trajectory IS estimates, importance sampling methods based on state-action
visitation distributions (SIS) have recently been adopted. Unfortunately, while SIS
often provides lower variance estimates for long horizons, estimating the state-
action distribution ratios can be challenging and lead to biased estimates. In this
paper, we present a new perspective on this bias-variance trade-off and show the
existence of a spectrum of estimators whose endpoints are SIS and IS. Additionally,
we also establish a spectrum for doubly-robust and weighted version of these
estimators. We provide empirical evidence that estimators in this spectrum can
be used to trade-off between the bias and variance of IS and SIS and can achieve
lower mean-squared error than both IS and SIS.

1 Introduction

Many sequential decision making problems, such as automated health-care, robotics, and online
recommendations are high-stakes in terms of health, safety, or �nance [Liao et al., 2020, Brown et al.,
2020, Theocharous et al., 2020]. For such problems, collecting new data to evaluate the performance
of a new decision rule, called an evaluation policy� e, may be expensive or even dangerous if� e
results in undesired outcomes. Therefore, one of the most important challenges in such problems is
the estimation of the performanceJ (� e) of the policy� e before its deployment.

Many off-policy evaluation (OPE) methods enable estimation ofJ (� e) with historical data collected
using an existing decision rule, called a behavior policy� b. One popular OPE technique is trajectory-
based importance sampling (IS) [Precup, 2000]. While this method is both non-parametric and
provides unbiased estimates ofJ (� e), it suffers from thecurse of horizonand can have variance
exponential in the horizon length [Jiang and Li, 2016, Guo et al., 2017]. To mitigate this problem,
recent methods use stationary distribution importance sampling (SIS) to adjust thestationary distri-
butionof the Markov chain induced by the policies, instead of the individual trajectories [Liu et al.,
2018, Gelada and Bellemare, 2019, Nachum and Dai, 2020]. This requires (parametric) estimation of
the ratio between the stationary distribution induced by� e and� b. Unfortunately, estimating this
ratio accurately can requireunveri�able strong assumptions on the parameters [Jiang and Huang,
2020], and often requires solving non-trivial min-max saddle point optimization problems [Yang
et al., 2020]. Consequently, if the parameterization is not rich enough, then it may not be possible
to represent the distribution ratios accurately, and when using rich function approximators (such
as neural networks) then the optimization procedure may get stuck in sub-optimal saddle points.
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In practice, these challenges can introduce error when estimating the distribution ratio, potentially
leading to arbitrarily biased estimates ofJ (� e), even when an in�nite amount of data is available.

In this work, we present a new perspective on the bias-variance trade-off for OPE that bridges the
unbiasedness of IS and the often lower variance of SIS. Particularly, we show that

• There exists aspectrumof OPE estimators whose end-points are IS and SIS, respectively.

• Estimators in this spectrum can have lower mean-squared error than both IS and SIS.

• This spectrum can also be established for doubly-robust and weighted version of IS and SIS.

In Sections3 and4 we show how trajectory-based and distribution-based methods can be combined.
The core idea establishing the existence of this spectrum relies upon �rst splitting individual trajec-
tories into two parts and then computing the probability of the �rst part using SIS and IS for the
latter. In Section5, we introduce weighted and doubly-robust extensions of the spectrum. Finally, in
Section6, we present empirical case studies to highlight the effectiveness of these new estimators.

2 Background

Notation: A Markov decision process (MDP) is a tuple(S; A ; r; T; 
; d 1), whereS is the state set,A
is the action set,r is the reward function,T is the transition function,
 is the discounting factor, and
d1 is the initial state distribution. Although our results extend to the continuous setting, for simplicity
of notation we assume thatS andA are �nite. A policy � is a distribution overA , conditioned on
the state. Starting from initial stateS1 � d1, policy � interacts with the environment iteratively by
sampling actionA t at every time stept from � (�jSt ). The environment then produces rewardRt
with the expected valuer (St ; A t ), and transitions to the next stateSt +1 according toT(�jSt ; A t ).
Let � := ( S1; A1; R1; S2; :::; SL ; AL ; RL ) be the sequence of random variables corresponding to a
trajectory sampled from� , whereL is the horizon length. Letp� denote the distribution of� under
� .

Problem Statement:The performance of any policy� is given by its value de�ned by the expected
discounted sum of rewardsJ (� ) := E � � p� [

P L
t =1 
 t � 1Rt ]. The in�nite horizon setting can be

obtained by lettingL ! 1 . In general, for any random variable, we use the superscript ofi to denote
the trajectory associated with it. The goal of the off-policy policy evaluation (OPE) problem is to
estimate the performanceJ (� e) of an evaluation policy� e using only a batch of historical trajectories
D := f � i gm

i =1 collected from a different behavior policy� b. This problem is challenging because
J (� e) must be estimated using only observational, off-policy data from the deployment of a different
behavior policy� b. Additionally, this problem might not be feasible if the data collected using� b is
not informative about the outcomes possible under� e. Therefore, to make the problem tractable, we
make the following standard support assumption, which implies that any outcome possible under� e
also has non-zero probability of occurring under� b.

Assumption 1. For all s 2 S anda 2 A , the ratio � e (ajs)
� b (ajs) < 1 .

Trajectory-Based Importance Sampling: One of the earliest methods for estimatingJ (� e) is
trajectory-based importance sampling. This method corrects the difference in distribution of� b and
� e by re-weighting the trajectories from� b in D by the probability ratio of the trajectory under
� e and� b, i.e. p� e ( � )

p� b ( � ) =
Q L

t =1
� e (A t jSt )
� b (A t jSt ) . Let the single-step action likelihood ratio be denoted

� t := � e (A t jSt )
� b (A t jSt ) and the likelihood ratio from stepsj to k be denoted� j :k :=

Q k
t = j � t . The full-

trajectory importance sampling (IS) estimator and the per-decision importance sampling (PDIS)
estimator [Precup, 2000] can then be de�ned as:

IS(D) :=
1
m

mX

i =1

� i
1:L

LX

t =1


 t � 1Ri
t ; PDIS(D) :=

1
m

mX

i =1

LX

t =1


 t � 1� i
1:t R

i
t ;

It was shown byPrecup[2000] that under Assumption1, IS(D) andPDIS(D) are unbiased estimators
of J (� e). That is,J (� e) = E � � p� b

[IS(� )] = E � � � b [PDIS(� )]. Unfortunately, however, both IS and
PDIS directly depend on the product of importance ratios and thus can often suffer from exponentially
high-variance in the horizon lengthL , known as the “curse of horizon” [Jiang and Li, 2016, Guo
et al., 2017, Liu et al., 2018].
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Distribution-Based Importance Sampling: To eliminate the dependency on trajectory length,
recent works apply importance sampling over the state-action space rather than the trajectory
space. For any policy� , let d�

t denote the induced state-action distribution at time stept, i.e.
d�

t (s; a) = p� (St = a; At = a). Let the average state-action distribution bed� (s; a) :=
(
P L

t =1 
 t � 1d�
t (s; a))=(

P L
t =1 
 t � 1). This gives the likelihood of encountering(s; a) when following

policy � and averaging over time with
 -discounting. Let(S; A) � d� and(S; A) � d�
t denote that

(S; A) are sampled fromd� andd�
t respectively. The performance of� e can be expressed as,

J (� e) = E � � p� e

"
LX

t =1


 t � 1Rt

#

=
X

s;a

LX

t =1


 t � 1 d� e
t (s; a)r (s; a) =

 
LX

t =1


 t � 1

!
X

s;a

d� e (s; a)r (s; a)

(a)
=

 
LX

t =1


 t � 1

!
X

s;a

d� b (s; a)
d� e (s; a)
d� b (s; a)

r (s; a) =
X

s;a

LX

t =1


 t � 1d� b
t (s; a)

d� e (s; a)
d� b (s; a)

r (s; a);

= E � � p� b

"
LX

t =1


 t � 1 d� e (St ; A t )
d� b (St ; A t )

Rt

#

;

where (a) is possible due to Assumption1. Using this observation, recent works have considered the
following stationary-distribution importance sampling estimator [Liu et al., 2018, Yang et al., 2020,
Jiang and Huang, 2020],

SIS(D) :=
1
m

mX

i =1

LX

t =1


 t � 1w(Si
t ; A i

t )R
i
t ;

wherew(s; a) := d� e (s;a )
d� b (s;a ) is the distribution correction ratio. Notice that SIS(� ) marginalizes over

the product of importance ratios� 1:t , and thus can help in mitigating variance's dependence on
horizon length for PDIS and IS estimators. When an unbiased estimate ofw is available, then SIS(� )
is also an unbiased estimator, i.e.,E � � � b [SIS(� )] = J (� e). Unfortunately, such an estimate ofw is
often not available. For large-scale problems, parametric estimationw is required in practice and we
replace the true density ratiosw with an estimatêw. However, estimatingw accurately may require
both a non-veri�able strong assumption on the parametric function class, and global solution to a
non-trivial min-max optimization problem [Jiang and Huang, 2020, Yang et al., 2020]. When these
conditions are not met, SIS estimates can be arbitrarily biased, even when an in�nite amount of data
is available.

3 Combining Trajectory-Based and Density-Based Importance Sampling

Trajectory-based and distribution-based importance sampling methods are typically presented as alter-
native methods of applying importance sampling for off-policy evaluation. However, in this section
we show that the choice of estimator is not binary, and these two styles of computing importance
weights can actually be combined into a single importance sampling estimate. Furthermore, using
this combination, in the next section, we will derive a spectrum of estimators that allows interpolation
between the trajectory-based PDIS and distribution-based SIS, which will often allow us trade-off
between the strengths and weaknesses of these methods.

Intuitively, trajectory-based and distribution-based importance sampling provide two different ways
of correcting the distribution mismatch under the evaluation and behavior policies. Trajectory-based
importance sampling corrects the distribution mismatch by examining how likely policies are to
take the same sequence of actions and thus applies the action likelihood ratio as the correction term.
Distribution-based importance sampling corrects the mismatch by how likely policies are to visit
the same state and action pairs—while remaining agnostic tohow they arrived—and applies the
distribution ratio as the importance weight. However, using distribution ratio and action likelihood
ratio correction terms are not mutually exclusive, and one can draw on both types of correction terms
to derive combined estimators.

To build intuition for why likelihood ratios and distribution ratios can naturally be combined, we
consider the two rooms domain shown in Figure3. In this example, there are two policies� b; � e
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Figure 1: Illustration of two room domain.
The domain consists of two rooms, the left
room and the right room separated by a con-
necting door.� b and� e are two different poli-
cies that move from the left room to the right
room. Note that, although� b and� e have two
different behaviors in the left room and right
room, both pass through the connecting door.

which have different strategies for navigating from the �rst room to the second room. Note that
while the behavior of the two policies are very different in the left room, both policies must pass
through the connecting door to get to the right room at some point in time. Conditioning on having
passed through the connecting door at a point in time, all parts of the trajectory that occur in the
right room are independent from what has occurred in the left room by the Markov property. Thus,
when considering a rewardRt that occurs in the right room, it is natural to consider the probability of
reaching the door and then the probability of the action sequence policy in the right room under each
policy.

Now, we formalize this intuition and show how trajectory-based and density-based importance
sampling can be combined in the same estimator. Given a trajectory� , we can consider(Sz ; Az ), the
state and action at timez in the trajectory. By conditioning on(Sz ; Az ), trajectory� can be separated
into two conditionally independent partial trajectories� 0:z and� z+1 ;L by the Markov property. Since
the segments of� before and after timez are conditionally independent, then� 1:z , the likelihood
ratio for the trajectory before timez, is conditionally independent from� z+1: L and fromRt for all
t � z. Formally, let(Sz ; Az ) � d� b

z , then,

J (� e) = E � � p � b
[PDIS(� )] = E � � p � b

"
LX

t =1


 t � 1� 1:t Rt

#

= E � � p � b

"
zX

t =1


 t � 1� 1:t Rt

#

+ E ( S z ;A z )

� d
� b
z

"

E � � p � b

"
LX

t = z+1


 t � 1� 1:z � z+1: t Rt

�
�
�
�
�
Sz ; Az

##

= E � � p � b

"
zX

t =1


 t � 1� 1:t Rt

#

+ E ( S z ;A z )

� d
� b
z

"
LX

t = z+1


 t � 1E � � p � b
[� 1:z jSz ; Az ] E � � � b

[� z+1: t Rt jSz ; Az ]

#

(a)
= E � � p � b

"
zX

t =1


 t � 1� 1:t Rt

#

+ E ( S z ;A z )

� d
� b
z

"
LX

t = z+1


 t � 1 d� e
z (Sz ; Az )

d� b
z (Sz ; Az )

E � � p � b

h
� z+1: t Rt

�
�
�Sz ; Az

i
#

= E � � p � b

"
zX

t =1


 t � 1� 1:t Rt +
LX

t = z+1


 t � 1 d� e
z (Sz ; Az )

d� b
z (Sz ; Az )

� z+1: t Rt

#

: (1)

where (a) follows from the following Property1, which states that the expected value of product
likelihood ratios� 1:z conditioned on(Sz ; Az ) is equal to the time-dependent state-action distribution
ratio for (Sz ; Az ). We provide a detailed proof of Property1 in AppendixA.

Property 1 ([Liu et al., 2018]). Under Assumption1, E � � p� b
[� 1:t jSt = s; At = a] = d� e

t (s;a )
d

� b
t (s;a )

.

Observe that Eq(1) is indexed by timez. Intuitively, z can be thought of as the time to switch
from using distribution ratios to action likelihood ratios in the importance weight. Speci�cally, the
distribution ratios are used to estimate the probability of being in stateSz and taking actionAz at
timez and action likelihood ratios are used to correct for the probability of actions taken after time
z. Further observe thatz does not have to be a �xed constant—z(t) can be a function oft so that
each reward in the trajectoryRt can utilize a different switching time. In the next section, we show
that by using a functionz(t) that allows the switching time to be time-dependent, we are able to
further marginalize over time and create an estimator that interpolates betweenaveragestate-action
distribution ratiosw(s; a) = d� e (s;a )

d� b (s;a ) , rather than time-dependent distribution ratiosd� e
t (s;a )

d
� b
t (s;a )

.
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(a) PDIS (b) SOPEn (c) SIS

Figure 2: Illustrations of the PDIS,SOPEn and SIS estimators. The dotted blue line represents an
example trajectory drawn from� e, and the solid red line represents an example trajectory from� b. All
three importance sampling methods work by re-weighting each rewardRt in the trajectory from� b.
(a) Trajectory-based PDIS works by re-weighting each reward byp� e ( � 1: t )

p� b ( � 1: t ) , the probability ratio of the
sub-trajectory leading up toRt under the� b and� e, respectively. This factors into� 1:t , the product of
t action likelihood ratios. (c) Distribution-based SIS considers the probability of encountering(St ; A t )
under� e and� b, and re-weightsRt by d� e (St ;A t )

d� b (St ;A t ) , (b) SOPEn combines trajectory and distribution
importance sampling weights by considering the probability of each policy visiting(St � n ; A t � n ),
the state-action pairn steps in the past, and additionally the probability of the sub-trajectory� t � n +1: t

from n steps in the past tot. Thus, SOPEn re-weightsRt by d� e (St � n ;A t � n )
d� b (St � n ;A t � n ) � t � n +1: t .

4 Bias-Variance Trade-off usingn -step Interpolation Between PDIS and SIS

We now build upon the ideas from Section3 to derive a spectrum of off-policy estimators that allows
for interpolation between the trajectory-based PDIS and distribution-based SIS estimators. This
spectrum contains PDIS and SIS at the endpoints and allows for smooth interpolation between them
to obtain new estimators that can often trade-off the strengths and weaknesses of PDIS and SIS. An
illustration of the key idea can be found in Figure2.

One simple way to perform this trade-off is to control the number of terms in the product in the action
likelihood ratio for each rewardRt . Speci�cally, for any rewardRt , we propose including only then
most recent action likelihood ratios� t � n +1: t in the importance weight, rather than� 1:t . Thus, the
overall importance weight becomes the re-weighted probability of visiting(St � n ; A t � n ), followed
by the re-weighted probability of taking the lastn actions leading up to rewardRt . This reduces
the exponential impact that horizon lengthL has on the variance of PDIS, and provides control over
this reduction via the parametern. To get an estimator to perform this trade-off, we start with the
derivation in(1) with z(t) = t � n, then accumulate the time-dependent state-action distributionsdt
over time. The �nal expression for the �nite horizon setting requires some additional constructs and
is thus presented along with its derivations and additional discussion in AppendixB. In the following
we present the result for the in�nite horizon setting.

J (� e) = E � � p� b

"
nX

t =1


 t � 1� 1:t Rt +
1X

t = n +1


 t � 1 d� e (St � n ; A t � n )
d� b (St � n ; A t � n )

� t � n +1: t Rt

#

: (2)

Using the sample estimate of (2), we obtain the Spectrum of Off-Policy Estimators (SOPEn ),

SOPEn (D ) =
1
m

mX

i =1

 
nX

t =1


 t � 1� i
1:t R

i
t +

1X

t = n +1


 t � 1ŵ(Si
t � n ; A i

t � n )� i
t � n +1: t R

i
t

!

:

Remark 1. Note that since we generally do not have access to the true density ratios, in practice we
substitutew with the estimated density ratioŝw similarly as in SIS. SinceSOPEn is agnostic to how
ŵ is estimated, it can readily leverage existing and new methods for estimatingŵ.

Observe thatSOPEn doesn't just give a single estimator, but a spectrum of off-policy estimators
indexed byn. An illustration of this spectrum can be seen in Figure3. As n decreases, the number of
terms in the action likelihood ratio decreases, andSOPEn depends more on the distribution correction
ratio and is more like SIS. Likewise asn increases, the number of terms in the action likelihood
ratio increases, andSOPEn is closer to PDIS. Further note that that for the endpoint values of this
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Let q be an estimate for the q-value function for� e, computed using the (imperfect) model. For
brevity, we make the random variable� � p� b implicit for the expectations in this section. For a
given value ofn, performance (2) of � e can then be expressed as,

J (� e) = E

"
1X

t =1

w(t; n )
 t � 1Rt

#

:

We now use this form to create a spectrum of doubly-robust estimators,

J (� e) = E

"
1X

t =1

w(t; n )
 t � 1R t

#

+ E

"
1X

t =1

w(t; n )
 t � 1q(St ; A t )

#

� E

"
1X

t =1

w(t; n )
 t � 1q(St ; A t )

#

| {z }
=0

( a)
= E

"
1X

t =1

w(t; n )
 t � 1Rt

#

+ E

"
1X

t =1

w(t � 1; n)
 t � 1q(St ; A � e
t )

#

� E

"
1X

t =1

w(t; n )
 t � 1q(St ; A t )

#

= E
�
w(0; n)
 0q(S1 ; A � e

1 )
�

+ E

"
1X

t =1

w(t; n )
 t � 1
�

Rt + 
q (St +1 ; A � e
t +1 ) � q(St ; A t )

�
#

= E
h
q(S1 ; A � e

1 )
i

+ E

"
1X

t =1

w(t; n )
 t � 1
�

R t + 
q (St +1 ; A � e
t +1 ) � q(St ; A t )

�
#

; (3)

where in (a) we used the notationA � e
t to indicate theA t � � e(�jSt ). UsingA � e

t eliminates the
need for correctingA t sampled under� b. We de�neDR-SOPEn (D ) to be the sample estimate of
(3), i.e., a doubly-robust form for theSOPEn (D ) estimator. It can now be observed that existing
doubly-robust estimators are end-points ofDR-SOPEn (D ) (for trajectory-wise settings, horizon
length needs to beL instead of1 for the estimator to be well de�ned),

DR-SOPEL (D ) = Trajectory-wise DR [Jiang and Li, 2016, Thomas and Brunskill, 2016];
DR-SOPE0(D ) = State-action distribution DR [Jiang and Huang, 2020, Kallus and Uehara, 2020]:

A variation of PDIS that can often also help in mitigating the variance of PDIS method is the
Consistent Weighted Per-Decision Importance Sampling estimator (CWPDIS) [Thomas, 2015].
CWDPIS renormalizes the importance ratio at each time with the sum of importance weights, which
causes CWPDIS to be biased (but consistent) and often have lower variance than PDIS.

CWPDIS(D) :=
LX

t =1


 t � 1

P m
i =1 � i

1:t R
i
tP m

i =1 � i
1:t

:

Similar DR-SOPEn , we can create a weighted version ofSOPEn estimator that interpolates between
a weighted-version of SIS and CWPDIS:

W-SOPEn (D ) :=
nX

t =1

 


 t � 1
mX

i =1

� i
1:tP m

i =1 � i
1:t

Ri
t

!

+
1X

t = n +1

 


 t � 1
mX

i =1

w(Si
t � n ; A i

t � n )� i
t � n +1: tP m

i =1 w(Si
t � n ; A i

t � n )� i
t � n +1: t

Ri
t

!

:

Since, unlike PDIS, CWPDIS is a biased (but consistent) estimator,W-SOPEn interpolates between
two biased estimators as endpoints. Nonetheless, we show experimentally in Section6 that in practice
even W-SOPEn can allow for bias-variance trade-off.

6 Experimental Results

In this section, we present experimental results showing that interpolated estimators within theSOPEn
andW-SOPEn spectrums can outperform the SIS/weighted-SIS and PDIS/CWPDIS endpoints. In
each experiment, we evaluateSOPEn andW-SOPEn for different values ofn ranging from0 to
L . This allows us to compare the different estimators we get for eachn and see trends of how the
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provides a natural interpolation technique to trade-off between the strengths and weaknesses of these
trajectory and density based methods. Additionally, while it is known thatq� (s; a) andd� (s; a) have
a primal-dual connection [Wang et al., 2007], our time-based interpolation technique also sheds new
light on connections between their n-step generalizations.

8 Conclusions

We present a new perspective in off-policy evaluation connecting two popular estimators, PDIS
and SIS, and show that PDIS and SIS lie as endpoints on the Spectrum of Off-Policy Estimators
SOPEn which interpolates between them. Additionally, we also derive a weighted and doubly robust
version of this spectrum of estimators. With our experimental results, we illustrate that estimators that
lie on the interior of theSOPEn andW-SOPEn spectrums can be used outperform their endpoints
SIS/weighted-SIS and PDIS/CWPDIS.

While we are able to show there existSOPEn estimators that are able to outperform PDIS and SIS, it
remains as future work to devise strategies to automatically selectn to trade-off bias and variance.
Future directions may include developing methods to selectn or combine all estimators for alln
using� -trace methods [Sutton and Barto, 2018] to best trade-off bias and variance.

Finally, like all off-policy evaluation methods, our approach carries risks if used inappropriately.
When using OPE for sensitive or safety-critical applications such as medical domains, caution should
be taken to carefully consider the variance and bias of the estimator that is used. In these cases,
high-con�dence OPE methods [Thomas et al., 2015] may be more appropriate.
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A Proof of Lemma 1

Liu et al. [2018] �rst showed that stationary importance sampling methods can be viewed as Rao-
Blackwellization of IS estimator, and claimed that the expectation of the likelihood-ratios conditioned
on state and action is equal to the distribution ratio, as stated in Property1. For completeness, we
present a proof of Property1. Recall thatd�

t (s; a) = p� (St = s; At = a).
E � � p� b

[� 1:t jSt = s; At = a]

= E � � p� b

�
p� e (� 1:t )
p� b (� 1:t )

�
�
�
�St = s; At = a

�

= E � � p� b

�
p� e (S1; A1; : : : ; St ; A t )
p� b (S1; A1; : : : ; St ; A t )

�
�
�
�St = s; At = a

�

= E � � p� b

�
p� e (S1; A1; : : : ; St ; A t )

p� e (St ; A t )
p� b (St ; A t )

p� b (S1; A1; : : : ; St ; A t )
p� e (St ; A t )
p� b (St ; A t )

�
�
�
�St = s; At = a

�

= E � � p� b

�
p� e (� 1:t jSt ; A t )
p� b (� 1:t jSt ; A t )

�
�
�
�St = s; At = a

�
p� e (St = s; At = a)
p� b (St = s; At = a)

(a)
= E � � p� b

�
p� e (� 1:t jSt ; A t )
p� b (� 1:t jSt ; A t )

�
�
�
�St = s; At = a

�
d� e

t (s; a)
d� b

t (s; a)

=

 
X

�

p� e (� 1:t jSt = s; At = a)
p� b (� 1:t jSt = s; At = a)

p� b (� jSt = s; At = a)

!
d� e

t (s; a)
d� b

t (s; a)

(b)
=

 
X

�

p� e (� 1:t jSt = s; At = a)
p� b (� 1:t jSt = s; At = a)

p� b (� 1:t jSt = s; At = a)p� b (� t +1: L jSt = s; At = a)

!
d� e

t (s; a)
d� b

t (s; a)

(c)
=

0

@
X

� 1: t

p� e (� 1:t jSt = s; At = a)
X

� t +1: L

p� b (� t +1: L jSt = s; At = a)

1

A d� e
t (s; a)

d� b
t (s; a)

=
d� e

t (s; a)
d� b

t (s; a)
:

Line (a) follows fromd�
t (s; a) = p� (St = s; At = a). In line (b), we use the Markov property which

gives that� 1:t and� t +1: L are independent conditioned on(St = s; At = a). Line (c) follows from
splitting the summation over� into to summations over� 1:t and� t +1: L .

B Full Derivation of SOPEn Estimator

To derive theSOPEn estimator, we repeat the derivation of(1) with z being a function of time,
z(t) = max f t � n; 0g. This gives us the expression

J (� e) = E � � p� b

"
nX

t =1


 t � 1� 1:t Rt +
LX

t = n +1


 t � 1 d� e
t � n (St � n ; A t � n )

d� b
t � n (St � n ; A t � n )

� t � n +1: t Rt

#

: (4)

Sincez(t) is function oft, we can accumulate thed�
t across time so that we can write the interpolating

expression usingaveragestate-action distribution ratios, rather than time-dependent ones. This
additional marginalization step over time allows us to consider time-independent distribution ratios.
Notation-wise, letd�

1:T := (
P T

t =1 
 t � 1d�
t (s; a))=(

P T
t =1 
 t � 1) for any timeT. d1:T can be thought

of as at the average state-action visitation over the �rstT time-steps. Note thatd� = lim T !1 d�
1:T

whered� is the average state-action distribution. Then, using the law of total expectation, we can
write the expectation of the second sum in (4) as:

E � � p� b

"
LX

t = n +1


 t � 1 d� e
t � n (St � n ; A t � n )

d� b
t � n (St � n ; A t � n )

� t � n +1: t Rt

#

=
LX

t = n +1


 t � 1E (St � n ;A t � n )
� d

� b
t � n

�
E � � p� b

�
d� e

t � n (St � n ; A t � n )
d� b

t � n (St � n ; A t � n )
� t � n +1: t Rt

�
�
�
�St � n ; A t � n

��
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LX

t = n +1


 t � 1E (St � n ;A t � n )
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� b
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d� b
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X
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!
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E � � p� b
[� 1:n Rn jS1 = s; A1 = a]
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=

X

s;a

 
L � nX
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d� e

1:L � n (s; a)

d� b
1:L � n (s; a)

E � � p� b
[� 1:n Rn jS1 = s; A1 = a]

=
X

s;a

 
LX

t = n +1


 t � 1d� b
t � n (s; a)

!
d� e

1:L � n (s; a)

d� b
1:L � n (s; a)

E � � p� b
[� 1:n Rn jS1 = s; A1 = a]

=
LX

t = n +1


 t � 1
X

s;a

d� b
t � n (s; a)

d� e
1:L � n (s; a)

d� b
1:L � n (s; a)

E � � p� b
[� t � n +1: t Rt jSt � n = s; At � n = a]

=
LX

t = n +1


 t � 1E (St � n ;A t � n )
� d

� b
t � n

�
E � � p� b

�
d� e

1:L � n (St � n ; A t � n )

d� b
1:L � n (St � n ; A t � n )

� t � n +1: t Rt

�
�
�
�St � n ; A t � n

��

= E � � p� b

"
LX

t = n +1


 t � 1 d� e
1:L � n (St � n ; A t � n )

d� b
1:L � n (St � n ; A t � n )

� t � n +1: t Rt

#

: (5)

In line (a), we useE � � p� b
[� t � n +1: t Rt jSt � n = s; At � n = a] = E � � p� b

[� 1:n Rn jS1 = s; A1 = a]
which follows from noting that conditioning onSt � n ; A t � n and considering then time steps after
is equivalent to conditioning onS1; A1 and considering then time steps after that. Lines (b) and

(d) follow from d�
1:L � n =

� P L � n
t =1 
 t � 1d�

t (s; a)
�

=
� P L � n

t =1 
 t � 1
�

. Line (c) is possible due to
Assumption1. Plugging in the �nal expression from (5) back into (4) gives us

J (� e) = E � � p� b

"
nX

t =1


 t � 1� 1:t Rt +
LX

t = n +1


 t � 1 d� e
1:L � n (St � n ; A t � n )

d� b
1:L � n (St � n ; A t � n )

� t � n +1: t Rt

#

: (6)

Note that
d� e

1: L � n (s;a )

d
� b
1: L � n (s;a )

is the state-action distribution ratio over the �rstL � n time-steps. In practice,

to estimate this ratio, one can discard the data from time-stepL � n to L , and use the same min-max
optimization procedures used to estimated� e

1: L (s;a )
d

� b
1: L (s;a )

on the remaining data to estimate this ratio.

Note that in the in�nite horizon setting whereL ! 1 and for �nite n, (6) becomes

J (� e) = E � � p� b

"
nX

t =1


 t � 1� 1:t Rt +
1X

t = n +1


 t � 1 d� e (St � n ; A t � n )
d� b (St � n ; A t � n )

� t � n +1: t Rt

#

:
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In this case, the typical optimization procedures for estimatingd� e (s;a )
d� b (s;a ) in the in�nite horizon setting

can be used to estimate the distribution ratios.

Additionally, note that speci�cally for the in�nite horizon setting, we can alternatively derive the
SOPEn estimator using the Bellman equations for the average state-action distributiond� . This
alternative derivation can be found in AppendixC.

C Bellman Recursion Derivation of SOPEn

We present an alternative derivation of theSOPEn estimator for the in�nite horizon setting using the
Bellman equations for the average state-action distributiond� , which is:

d� (s; a) := (1 � 
 )
1X

t =1


 t � 1 Pr(St = s; At = a ; � )

= (1 � 
 )d1(s)� (ajs) + 

X

s02S ;a 02A

Pr(s; ajs0; a0; � )d� (s0; a0): (7)

Now using (7) we can expandJ (� e) and unrolld� e once to obtain

J (� e) = (1 � 
 ) � 1
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s2S ;a2A

r (s; a)d� e (s; a)
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X

s2S ;a2A
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2
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s02S ;a 02A
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5
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X
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r (St ; A t )

#

: (8)

where (a) follows by relabelling in the common notation such that(s; a) and(s0; a0) are consecutive
state-action pairs. Notice thatSOPE1(D ) is the sample estimate of(8). Similarly, on unrollingd� b

twice using (7),
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X

s2S ;a2A

Pr(s0; a0js; a; � e)d� e (s; a);

Where the last line follows by relabelling the state-action pairs such that they match the common
notation where(s; a), (s0; a0) and(s00; a00) are the state action tuples for three consecutive time-steps.
Now changing the sampling distribution as earlier,

J (� e) = E � � � b

"
� e(A1jS1)
� b(A1jS1)

r (S1; A1) + 

� e(A1jS1)
� b(A1jS1)

� e(A2jS2)
� b(A2jS2)

r (S2; A2)

+
1X

t =3


 t � 1 d�
e (St � 2; A t � 2)

d� b (St � 2; A t � 2)
� e(A t � 1jSt � 1)
� b(A t � 1jSt � 1)

� e(A t jSt )
� b(A t jSt )

r (St ; A t )

#

(9)

It can be now observed thatSOPE2(D ) is the sample estimate of(9). Similarly, by generalizing this
pattern it can be observed that on unrollingn times, we will get,

J (� e) = E � � � b

"
nX

t =1

0

@
tY

j =1

� e(A j jSj )
� b(A j jSj )

1

A 
 t � 1r (St ; A t )+

1X

t = n +1


 t � 1 d� e (St � n ; A t � n )
d� b (St � n ; A t � n )

0

@
n � 1Y

j =0

� e(A t � j jSt � j )
� b(A t � j jSt � j )

1

A r (St ; A t )

#

= E � � p� b

"
nX

t =1


 t � 1� 1:t Rt +
1X

t = n +1


 t � 1 d� e (St � n ; A t � n )
d� b (St � n ; A t � n )

� t � n +1: t Rt

#

: (10)

Finally, it can be observed that that SOPEn (D ) is the sample estimate of (10).

D Additional Experimental Details

For all experiments, we utilize the domains and algorithm implementations fromCaltech OPE
Benchmarking Suite (COBS)library by Voloshin et al. [2019]. Our code can be found at
https://github.com/Pearl-UTexas/SOPE, and our experiments ran on 32 Intel Xeon cores.
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D.1 Experimental Set-Up

For our experiments, we used the Graph, Toy Mountain Car, and standard Mountain Car [Brockman
et al., 2016] domains provided in the COBS library. We include a brief description of each of these
domains below, and a full description of each can be found in the work byVoloshin et al.[2019].

Graph Environment The Graph environment is a two-chain environment with2L states and 2
actions. The ends of the chain are starting statex0 = 0 and absorbing statexabs = 2L. In between
x0 andxabs , the remaining states form two chains of lengthL � 1 each. The states on the top chain
are labeled1; 3; : : : ; 2L � 3 and the states on the bottom chain are labeled2; 4; : : : ; 2L � 2. For each
t < L , taking actiona = 0 , the agent will try to enter the next state on the top chainx t +1 = 2 t + 1 ,
and taking actiona = 1 , the agent will try to enter the next state on the bottom chainx t +1 = 2 t + 2 .
Since the environment is stochastic, the agent will succeed with probability 0.75 and slip into the
wrong row with probability 0.25. The reward is +1 if the agent transitions to a state on the top chain
and -1 otherwise. For our experiments, we setL = 20 and
 = 0 :98.

Toy Mountain Car Environment The Toy-MC environment [Voloshin et al., 2019] is a tabular
simpli�cation of the classic Mountain Car domain. There are a total of 21 states:x0 = 0 the starting
point in the valley, 10 states to the left, and 10 states to the right. The right-most state is a terminal
absorbing state. Taking actiona = 0 moves the agent to the right and taking actiona = 1 moves the
agent to the left. The agent receives reward ofr = � 1 each time step, and the reward becomes 0
when the agent reaches the terminal absorbing states. For our experiments, we use random restart
where start in a random state in the domain and setL = 100 and
 = 0 :99.

Mountain Car Environment We use the Mountain Car environment from OpenAI gym with the
simplifying modi�cations applied inVoloshin et al.[2019]. In particular, the car agent starts in a
valley and needs to move back and forth in order to gain moment to reach the goal of getting to the
top of the mountain. The state space is the position and velocity of the car. At each time step, the car
agent can either accelerate move forward, move backwards, or do nothing. Additionally, at each time,
the agent receives a reward ofr = � 1 until it reaches the goal. The environment is modi�ed in the
COBS library to decrease the effective trajectory length by applying each actionat �ve times before
observingx t +1 . Additionally, the initial start location is modi�ed from being uniformly chosen
between[� :6; � :4] to be randomly chosen fromf� :6; � :5; � :4g with no velocity.

PoliciesFor the tabular environments Graph and Toy Mountain Car, we utilize static policies that
take actiona = 0 with probabilityp and actiona = 1 with probability1 � p. For the Mountain Car
environment, we utilize an� -greedy policies with the provided DDQN trained policy in the COBS
library.

MethodsFor our experiments, we evaluate the performance of our proposedSOPEn andW-SOPEn

estimators. To estimate the average state-action visitation ratiosd� e (s;a )
d� b (s;a ) , we utilize the implemen-

tation of methods fromLiu et al. [2018] provided in the COBS library. For the Mountain Car
experiments, we utilize the radial-basis function for the kernel estimate and a linear function class for
the density estimate. Speci�c hyper-parameters can be found below.

Parameter Graph Toy-MC Mountain Car
Quad. prog. regular. 1e-3 1e-3 -

NN Fit Epochs - - 1000
NN Batchsize - - 1024

D.2 Impact of Policy Mismatch Between� b and � e on SOPEn and W-SOPEn

We examine the impact of the policy mismatch between the behavior and evaluation policies on the
performance of theSOPEn andW-SOPEn estimators. In this experiment, the evaluation policy takes
actiona = 0 with probability0:9, and we vary the probability that the behavior policy takesa = 0
from 0:1 to 0:8 by increments of0:1. We examine the performance of theSOPEn andW-SOPEn
estimators across values ofn for the different behavior policies. Results can be seen in the plots
below.

The performance of PDIS and SIS has been known to be negatively correlated with the degree of
policy mismatch [Voloshin et al., 2019]. We also �nd this to be generally true for the performance of
theSOPEn andW-SOPEn estimators. Additionally, we observe that the degree of mismatch between
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